ON THE EVALUATION OF THE CRITICAL REYNOLDS
NUMBER FOR THE FLOW OF FLUID BETWEEN
TWO ROTATING SPHERICAL SURFACES

(K OTSENKE KRITICHESKOGO CHISLA REINOLDSA DLIA
TECHENIIA ZHIDKOSTI MEZHDU DVUMIA
VRASHCHAIUSHCHIMISIA SFERICHESKIMXI POVERKHNOSTIAMI)

PHM Vol.25, No.5, 13961, pp. 858-866

Ju.K. BRATUKHIN
{(Perm’)

(Received April 28, 1961)

The investigation of the onset of flow instability in a closed region has
so far been carried out as a nonlinear problem only for the case of fluid
motion between two cylinders rotating at different angular velocities
[1]. In this problem the equations for the basic laminar motion may be
solved exactly for any Reynolds number,

For the flow between two rotating cylinders (*Taylor flow") Taylor has
shown theoretically that laminar flow ceases to be stable at a certain
critical Reynolds number. The form of the disturbance which broke down
the laminar flow was also determined theoretically. Furthermore, Taylor
has shown in classical experiments that after breakdown of the basic flow
for Reynolds numbers somewhat above the critical value, there appears a
new stationary flow whose form is almost indistinguishable from the in-
stability flow resulting from a normal disturbance, and the intensity
appears to be proportional to /(R — R ). As has been shown {2 ], this
latter relationship must apply to unbsunded flows, but in regard to the
*"intensity" of the nonstationary motion arising after the breakdown of
the stationary flow, it is evident that the phenomena of the breakdown
of stability are of a nonlinear nature. The theoretical investigation of
the nonlinear equations of hydrodynamics for the Taylor flow was carried
out by Stuart {3 ], who used a method similar to the method of Landau
for unbounded flows. Recently, however, it was discovered [4 ] that the
Taylor problem may not be regarded as a typical closed-flow problem,

In the present paper we consider the stability problem of the fluid
flow in the space between two concentric spheres. The problem is solved
using the method of small perturbations. From the results of proposed
experiments 1t is expected that the critical Reynolds number will be
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known. It is assumed that the outer boundary, i.e. the wall of the
spherical layer of radius rg» is stationary, and the inner boundary of
radius r; is rotating with angular velocity

Q=0n (n? = 1) 0.1)

Let us choose the following as characteristic quantities: radius of
the inner sphere ry, velocity V/rl, moment of forces rl.;Jvz. where v is
the kinematic viscosity, p the density of the fluid. Then the Reynolds
number is

R =r®Q/v (0.2)

The calculations were carried out for r2/rl = a= 2. A solution was
looked for in terms of powers of Reynolds number. The convergence of
such an expansion for small Reynolds numbers is proved in [5]. since
the calculations become very cumbersome for large powers of R, we had to
confine ourselves to terms proportional to R®. The results obtained by
this method, therefore, are not valid for ro>>ry or for rg —ry <L r;.

1. Basic laminar flow. The equations of steady motion in terms
of the chosen nondimensional quantities have the form

(UV)U = — VP —rot rot U, divU =90 (1.1)

U| = Rnxry, Uls =0 (r, 1s a unit vector along the radius)

81
We look for the solutions of these equations in the form of series

U=RU, +RU: ..., P =RP +RP; ... (1.2)

The well-known first approximation [2] is

1 ‘ a®
U, =a()nxr, a(r):m(%—1> (1.3)
For the second approximation we obtain from (1.1) and (1.2) the equa-
tions

UPs 4rotrot Us = — (UtV) Uy,  divU, =0, Uyl =0 (1.4)

Sy, 82

It is convenient to carry out the solutions of these equations in
spherical coordinates r, &, ¢. We shall denote the coordinate vectors by
ry, 91 and ¢,, and expand the right-hand side in terms of spherical
vector functions [6 1. The calculation yields

(UV) U, = a?r [2(Ys — )11+ L 7r VY] (n:% (Beost® — 1)  (1.5)
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Since the operator on the left-hand side of (1.1) is invariant with
respect to speed of rotation, the solution must have the form
U=FrNnY: +GHNrvY:
Pe=P(r) +-Q(r)Y: (1.6)

Substitution of Expressions (1.5)
and (1.6) into (1.4) gives

P =2 e
— r2Q' — 6F 4- 6 (rG)’ = Lr%? (1.7)
— Q —F 4+ (rG)" =+ r¥%a®
(7*FY — 6rG =0

F(1)=0, F@=0 (1.8)
GA)=0, G(@) =0

Fig. 1.

To determine function G we eliminate Q and F and obtain by simple

calculations

s 4 ¢ L Cw G
Fzg(aTa“_m—J[—Tz%-rﬁLCﬂT%—r ¥ +—5—1r7] (1.9)
Four coefficients C are determined from (1.8):
) 2 1 1 1
Ll + CQ+C3:1—F, ?Cl_‘TCQ“‘% % CS +C4:*—1—‘—a?
. 1 1 3 1 1 2
"7’301‘1'7‘02‘1‘(1613:_;3‘, %C;*%CQ—}—%C'Q—%—GTC,,::W(JT
(1.40)
For a = 2 we obtain
F = et (r — 1) (2 — 1) (832 4 452r 478, 4-137%)  (1.49)

The secondary velocity U, superimposed upon the basic flow may be re-
presented in the form

rF

U, =rot | — - rxVYQ] (1.12)

The meridional *"streamlines* for U,, whose equations are r’F sin? 9
cos ¥ = const, are represented in Fig. 1. This secondary motion should
never be confused with the motion created by the onset of instability.
It exists always, although it may not be noticeable experimentally for
small Reynolds numbers, since the ratio of this correction velocity U,
to U; is of the order of one thousandth.



Critical Reynolds number for fluid flow 1289

2. Decrements in a stagnant fluid. To investigate the sta-
bility we shall find first the decrements of normal perturbations for
R =0, i.e. in a stagnant fluid, and, after that we shall calculate their
variation with increasing R.

It is known [4 ] that in a stagnant fluid normal disturbances are
attenuated according to the law exp (—A t ), where the A-values are real.
For the velocity field of normal perturbations u we obtain the equations

[4]

— A +Vp +rotrotu=10, divu=0, =0 (2.1)

‘sn 82

The problem has spherical symmetry, therefore it is convenient to ex-
pand the perturbation in terms of spherical vector functions [6 ]

u=fMNY¥rr +g@)rvVY +h(rrxVY, p=q(@rY (2.2

where Y= Y, (90, ¢) = Pl(') (%) exp (im ¢) are spherical functions of
order l. Note that g = h = 0 for I = 0. Because of full spherical sym-
metry it is clear that the decrements will not depend on the number m
(the orientation of the disturbances in space is irrelevant). Therefore,
henceforth, in this section m = 0 and the index ! is dropped. Substitut-
ing (2.2) into (2.1) we obtain

—M 4y + HS 1 — (g1 =0 2.3)
—Mg+E 10— ()] =0
a2 lED g (2.4)

Mo 2 BN,

where all three functions f, g and h vanish for r = 1 and r = a. Evi-
dently, the functions h are determined independently of f and g; con-
sequently the perturbations are of two types: for ¢-disturbances

u=~r({)rxvVY (2.5)

the particles do not cross their spherical layer, whereas for r-disturb-
ances

u=f@rYr, Lg(rrvYy (2.6)

the fluid particles have a radial velocity component.

From (2.4) is seen that:
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a) The ¢-perturbation may be defined by Bessel functions of index one
half, i.e. by trigonometric functions

h(r) = Crpr (A2r) - Cayg (AY?r) 2.7
where [ 7 ]
i Irsing Vi freos z s
(@) = ()2 (%) [T5] w@ = () [ =228

The boundary conditions yield
Crpr (A3 - Cope (M%) =0,  Cupr (A%) + Cop2 (M%) = 0 (2.9)

Hence the equation for A is as follows:
V1 A7) g (A1 Pa) =1 (A %a) g2 (MF) (2.10)

For every ! there exists an indefinitely increasing sequence of de-
crements, and the smallest of them for each I will be henceforth denoted
by A,.

l

It is easily shown that A; < Ay <A; <, ... . Indeed, the smallest

eigenvalue of the problem (2.4) is equal to the minimum of the expression
47 a

Quik) = S [ U+ 1) Rl dr) / ( Sr%’dr) @.11)

1 1

if the trial functions vanish at the limits of interval [1, a]. Since
it is evident that Q;[h] < Q;, ,[h] (the trial functions for all I are
the same) then obviously

min Qz < min QH‘l (2.12)

Thus, the smallest decrement of the ¢-perturbation is obtained for
I = 1. The numerical solution of Equation (2.10) for a = 2 yields

A =10.80, C:/Ci=2120, u=—h()sindp  (2.13)

b) r-perturbations. In order to solve the system (2.3) we shall first
determine the pressure. From (2.1) we have (dropping the index 1)

wp=p+2p - p=0 (2.14)
Hence

(A, B == const) (2.15)

B
p=Ar +—

Pl

Then, eliminating g from (2.3), we obtain
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— 1B
# +_/:_ 7 +P~_M#__2_]f — 4p—1 U ;‘l‘+; (2.16)

with the boundary conditions

fy=f@=71=7(@=0 (2.17)
The homogeneous equation, corresponding to (2.16), has the solution
L Do A1) 4 Dogs (AV21)] (2.18)

and Equation (2.16) is easily solved by the method of variation of co-
efficients. Let us introduce the notation

Mo g Hee

Ii(r, A PR ARy dr, T3 (r, A) =\ rT P (A2 dr
(r. A) P

Io (ry &) = \ PP, AY2r) dr,  Is(r, &) = \r P, (A2 dr (2.19)
(r, 2) P

e N e

Integrals (2.19) are calculated directly, using known formulas [8 ].
Then the exact solution of (2.16), satisfying conditions (2.17) at the
lower limit, will be

F(r) =L (ds —palt) +2 (puls — k) (2.20)
Conditions (2.17) for r = a lead to the equations

A [ (M%) Ia (A, @) — P2 (M%) 11 (A, a)] +

+ B [y, (\M%a) Is (A, a) — P2 (\%a) Is (A, @)] = 0O
A [P (%) I (A, @)— g2’ (M%) It (A, a)] +

+ B [y’ (AM%a) Lo (A, @) — 2’ (M%) Is (A, )] =0

where the prime signifies derivatives with respect to r. Equating to
zero the determinant of this system, we obtain

Ii(A a) I (A, a) = Ia (A, a) Is (A, a) (2.21)

This condition determines the spectrum of A-decrements. In practice,
it is impossible to calculate the variation of all the decrements with
R. Therefore, at first the smallest decrements for various I were
calculated, then those among them were selected which, according to
physical considerations, must decrease faster with increase of R than
the remainder. For a = 2 the smallest decrements for [ =1, 2, 3, ...
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are equal to A; = 38.62, A, = 37.49, A; = 36.9, A, = 37.2, A, = 38.9.
Morever they sharply increase with increase of I.

It is most probable that the laminar flow will be broken down through
the perturbations, whose lines of flow coincide approximately with
streamlines of the secondary velocity of U, of the basic flow. This con-
dition is satisfied by the perturbation in the case I = 2. Precisely for
this case the calculations were carried out which verify the assumptions.
For comparison the calculations were carried out also for I = 1.

Since Formula (2.20) is cumbersome for numerical calculations, it is
desirable to obtain approximate expressions for f;(r) and f,(r). To do
this we reduce Equations (2.3) to a variational problem. Eliminating p
and g, we obtain

(rfy —2s () 4s(s —2) f= A (s —2) *f — (7f')] (2.22)

where for simplification s = [ (I + 1). The smallest eigenvalue A is
equal to the minimum of expression

@ [e} (2.23}
M) =2 4 20077 s (s — 2) Plar [ 12 4 (s — 9riplar
i i

1

with the condition (2.17). Hence, using the Ritz method, we obtain for
a =2

(@) =41(r — 1) @2 — 1?1 — 0.446 1),
fo(r) =420 — 1) 2 —r)2 (1 — 0.426 r) (2.24)

The constants Al = 6.39 and Az = 12.47 for a = 2 were determined from
the condition of normalization

SuﬁdV =1 (¥ is the volume of (2.25)
\ fluid)

3. Decrements in the case of slow flow. For small R's normal
perturbations may be expanded in series (the index ! is dropped)

u +whR fuR? ... 3.1)

For the velocity field u, we obtain the system of equations [4]

— Am +gpr Frotrot ur = — [(U; V) u 4 (uV) Uil (3.2
divar =0, u1fs=0

a) Treatment of the ¢-perturbations. Using (1.3) and (2.13), let us
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expand the right-hand side of (3.2) in terms of spherical vector func-
tions

(U,¥) u + (u¥) U;= — 20k sin & nx gy = 22 [2 (1 — Y3) 1, — r7Y2] (3.3)

In agreement with (3.3) we are looking for the solution of (3.2) in
the form

u =03 Yer 7)1z,  pr= qo + gY2 (3.4
Projecting (3.2) on the axes of spherical coordinates, we find
(3.5
The equation of continuity is
R L (3.6)

The boundary conditions are

pY=p@=71)=1(@=0 3.7)

To determine functions 8 and y let us first find g,. To do this we
take the divergence of both parts of (3.2) and equate the coefficients
of the spherical function Y, on the left- and the right-hand sides of
the equation. After some calculations we obtain

4 c D
©=5:Z0) +5 7+ (z0=\nrar) 3.9)

Eliminating the function y from (3.5), we obtain the equation for

B PV 4 4 D
pr - —B T(xl_ﬁ>ﬁ:‘“ﬁz +Cr——

PO =P@ =)= (=0

The solution of the homogeneous equation, in agreement with (3.9),
is

(3.9)

F 570 (1) asd oM7)

where Jé(x) is a Bessel function of the first kind of order p.
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TABLE
r @, @, D, 6
1.0 0 0 0 0
1.1 -+0.01718 —0.01312 -+-0.00041 --0.000103
1.2 --0.02522 —0.01827 -0.,00759 -+0.000283
1.3 -4-0.02258 —0.01661 +0.00631 -+0.000341
1.4 -+0.01237 —0.00840 -+-0.00237 -+0.000279
1.5 —0.00072 ~+0.00202 —0.00222 -10.000161
1.6 —0.01146 —0.01075 —0.00606 --0.000034
1.7 —0.01682 --0.01495 —0.00765 —0.000037
1.8 —0.01562 --0.01364 —0.00679 —0.000040
1.9 —0.00872 --0.00788 —0.00409 + —0.000033
2.0 0 0 0 i 0

By varying coefficients, the solution of (3.9) is easily found so as
to satisfy the conditions B(1) = 8(1) = 0:

B(r) = 2rr=sie {75 (b1 %) 220 " ) Zadr —

-y

r

_ J._5/2(’A:11"27') Rr—3,/2.]5/2 (7\’11/2)_) Zdr +

1

c T 25/2 ' o .
g |t Tt s ) T ) o (Y] <

D 2r—8/2 z ‘o 5 :
TR [ 1;»11/2 A+ oo (M Pr) T g0 (M) T s r0(AM ) J3/2(7‘11/2)}] (3.10)
1 7

The function y is determined from (3.6). The constants C and D in
(3.10) have to be found from conditions B(a) = B3“(a) = 0. For a = 2,
numerical calculations yield C = — 0.006374 and D = — 0.4531. The values
of B are represented in the table.

From the equations of the second correction to the perturbation [4 ]
we have
— Auz — M 4 gpe - rot rot ue

= — [(U,V)u + (uV) U, - (u,V) Uy + (U, V) u] (3.11)

Let us determine the correction to the decrement. For this purpose we
multiply (3.11) by u and integrate over the whole volume V of the liquid

1%

h® = Su ) Uy dV -+ g u (@) UydV | (U 9)udl  (3.12)
v v

with the condition
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giude-———i

After integrating over the angles of (3.12) we obtain
8n 0: 2 a: 2
Mm_—_ﬁ{——&(F + 3G) kerdr - X([s + 37) harddr +
1

1

+{ 1B @ +3val hridr) (3.13)

Numerical integration for a = 2 yields Al(z) = - 0.000212. The de-
crement of the ¢-perturbation, to the R? approximation, is

m=10.80[1 — (55)] (3.44)

b) Treatment of the r-perturbation.
1. Perturbation case [ = 1. Its
/ meridional streamlines are defined by
! the equation (Fig. 2)

\ f1r? sin? & = const (3.15)

This perturbation opposes the basic
flow in some regions of the cavity

(Fig. 1).

We shall expand the right-hand side
of (3.2) in terms of spherical vector
functions

Fig. 2.

(Uy9)u + (uy) Uy = (ira’ + 2fia — 2g10) sin & cos dgr =
= _; (i'ar — fra’r) e X Y2 (3.16)

Let us look for u; satisfying this function in the form

m =D, (r) r X VY2 (3.17)

Projecting (3.2) on the axis ¢;, we obtain
” 2 ’ 6 1 I 7
O = Dy 4 (ha— Tz)d)z = o (h'ar — fira’) (3.18)

This equation was integrated numerically. The function ®, for a = 2
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is represented in the table. After integrating over the angles in (3.12)
we obtain in this case

81
@) = 2
M 5\

5\ B0 (i — g) @+ [ +3(F——G)f‘1;“m+

"‘../GQ

+ 30186 + 829G — F)l rdr (3.19)

under the condition of (2.25). Numerical integration for ¢ = 2 yields
Ay (2) = 0.00658. The decrement of r-disturbance for I = 1 approximated
to the R2 term is

A1 = 38.6 [1 + ({7")?] (3.20)

Thus, the larger R, the stronger the damping of this perturbation. The
case when | = 3 1s analogous to this case and the calculations were

omitted.

2. Perturbation case [ = 2, This case is unique because its stream-
lines given in the meridional plane by the equation

for® cos & sin® & = const (3.21)

are parallel to the streamlines of the secondary flow imposed upon the
basic flow and are almost indistinguishable from them (Fig. 1). There-
fore, we may assume offhand, that this perturbation is most apt to break
down the laminar flow. We shall expand the right-hand side of (3.2) in
terms of spherical vector functions

(3.22)
U7)u+@ul= 2=t @ 12 22— 6 oost 8% n x r =
= “5r (fe'a + fa’ 4 %a) rx VY14 - s (3 fo'a — faa’ —?@})rx\“]}’s
Let us look for a solution of (3.2) satisfying the above in the form
= O ()X VY1 +Ds ()1 X VYs (3.23)

Projecting (3.2) upon the ¢, -a¥is and equating the coefficients of
the same spherical functions we obtain

Oy 4 %(D;' +<7&2 — %)(D; = —~~—(}‘2{l 4 foa! —{—4 2 )
05" +%(D3' -—Jr(lz — %2)(1)3 = -—»5—<-3—]‘2'a — f2a’ -3

These equations were integrated numerically. The values of functions
®, and @, for a = 2 are represented in the table.
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After integrating over the angles in (3.12) we obtain

Aal® = %g{ faa (605 — 5 ®1) + gaa (1205 — T0u) +
1

1o 1986 1 3(pge 120 4 e BECYY g,

The numerical integration for a = 2 yields A, (2) = _ 0.00367, with the
condition of (2.25). The decrement A, for the r-perturbation in the R?
approximation is

_ B
he = 37.49[1 — (1—%)] (3.24)
4. Conclusions. The behavior of decrements with increase of R is

represented in Fig. 3, where curve 1 is the ¢-perturbation for I = 1,
curve 2 is the r-perturbation for ! = 2 and curve 3 is the r-perturbation
for 1 = 1. The decrement A; for the r-perturbation increases with R; con-
sequently, the basic flow is stable with respect to this perturbation.
The two other curves slope down, however; curve 2 intersects the x-axis
at R~ 100, likewise curve 1 at R “-= 230. This means that the laminar
flow

=(an X r)R + (FYn + Gr7Ys) R? 4.1

will be broken down by the r-perturbation in the case [ = 2
u = (faYer1 + g2rVYs) 4+ (Prr X VY1 4 Osr X VYs) R (4.2)

for Reynolds numbers of the order 100,

Qualitatively, flows (4.1) and (4.2) do not differ from each other.
In both cases there is a velocity component along ¢, proportional to R.
The meridional streamlines are also similar in the case of both motions.
In this manner, after the breakdown of the basic flow, a new flow will
be established which is almost of the same form. As established by the
nonlinear theory [4 ], the new stationary motion will be

U 4 bue (B—R,) (4.3)

It will be observed only for R > R_, where it is stable. Although the
coefficients b were not calculated, it may be surmised that the second-
ary flow for R > R_ will be directed into the same direction as the

*
basic flow. For R < R, it is in the opposite direction and it is not
stable.

The observations of these phenomena will be very difficult, because
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Fig. 3.

the appearance of the new motion may be detected only by a break in the
curve which determines the intensity of the flow as a function of R.

I take this opportunity to thank V.S. Sorokin for suggesting the
problem and for his valuable help.
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