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The investigation of the onset of flow instability in a closed region has 
so far been carried out as a nonlinear problem only for the case of fluid 
motion between two cylinders rotating at different angular velocities 
El 1. In this problem the equations for the basic laminar motion may be 
solved exactly for any Reynolds number. 

For the flow between two rotating cylinders (“Taylor flow*) Taylor has 
shown theoretically that laminar flow ceases to be stable at a certain 
critical Reynolds number. The form of the disturbance which broke down 
the Iaminar flow was also determined theoretically. Furthermore, Taylor 
has shown in classical experiments that after breakdown of the basic flow 
for Reynolds numbers somewhat above the critical value, there appears a 
new stationary flow whose form is almost indistinguishable from the in- 
stability flow resulting from a normal disturbance, and the intensity 
appears to be proportional to \I(R - R 1. As has been shown [ 2 1 , this 
latter relationship must apply to unb&inded flows, but in regard to the 
“intensity” of the nonstationary motion arising after the breakdown of 
the stationary flow, it is evident that the phenomena of the breakdown 
of stability are of a nonlinear nature. The theoretical investigation of 
the nonlinear equations of hydrodynamics for the Taylor flow was carried 
out by Stuart 13 1, who used a method similar to the method of Landau 
for unbounded flows, Recently, however, it was discovered [ 4 1 that the 
Taylor problem may not be regarded as a typical closed-flow problem. 

In the present paper we consider the stability problem of the fluid 
flow in the space between two concentric spheres. The problem is solved 
using the method of small perturbations. From the results of proposed 
experiments it is expected that the critical Reynolds number will be 
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known. It is assumed that the outer boundary, i.e. the wall of the 
spherical layer of radius rg, is stationary, and the inner boundary of 
radius r1 is rotating with angular velocity 

Sl=Qn (n2 = 1) (0.1) 

Let us choose the following as characteristic quantities: radius of 
the inner sphere ‘1, velocity v/rl, moment of forces ‘1, p v2, where v is 
the kinematic viscosity, p the density of the fluid. Then the Reynolds 
number is 

R = r&?/v (0.2) 

The calculat.ioas were carried out for r2/r1 e a = 2. A solution was 
looked for in terms of powers of Reynolds number. The convergence of 
such an expansion for small Reynolds numbers is proved in 15 1. Since 
the calculations become very cumbersome for large powers of R. we had to 
confine ourselves to terms proportional to R2. The results obtained by 
this method, therefore, are not valid for r2>>rl or for r2 - r1 << rl. 

1. Basic laminar flow. ‘Ihe equations of steady motion in terms 

of the chosen nondimensional quantities have the form 

(UO)U= --VP-rotrotu, div U = 0 (1.1) 

U IS1 = Rn x ri, u I& = 0 (4 is a unit vector along the radius) 

We lo& for the solutions of these equations in the form of series 

u =RU1+RW2 +..., P = RPI +R2P2 -!-. . . (l-2) 

The well-known first approximation 12 1 is 

u, = a (r) n x r, a (r) = -& ($ - 1) (1.3) 

For the second approximation we obtain from (1.1) and (1.2) the equa- 
tions 

VP2 + rot rot U2 = - (CO) U,, div U2 = 0, U, IS,, s2 = 0 (1.4) 

It is convenient to carry out the solutions of these equations in 

spherical coordinates r, 6, c$. We shall denote the coordinate vectors by 

rl, 61 and c&, and expand the right-hand side in terms of spherical 
vector functions 16 I. ‘I&e calculation yields 

(U,V) u, = czar [$ (Y2 - 1) l-1 + f r v Y,] (Y,=;(3cos~B-l)) (1.5) 
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Since the operator on the left-hand side of (1.1) is invariant with 

respect to speed of rotation, the solution must have the form 

UZ = F (r) rl YZ + C (r) r V Yz 

1% = P (r) + Q (r) Y2 (1.G) 

Substitution of Expressions (1.5) 

and (1.6) into (1.4) gives 

p’ +)_cr2 

- r2Q' - GF + G (rG)’ = $r3a2 (1.7) 

- Q - F’ + (rG)” = f r2a2 

(r2F)’ - GrG = 0 

F (1) = 0, F (a) = 0 (1.8) 
G (1) = 0, G (a) = 0 

Fig. 1. 

To determine function G we eliminate Q and F and obtain by simple 
calculations 

Four coefficients C are determined from (1.8): 

For (I = 2 we obtain 

F= 2 
35039r4 

(r - 1)2 (2 - r)” (832 + 452r + 78r2 + 13r3) (1.11) 

The secondary velocity U, superimposed upon the basic flow may be re- 

presented in the form 

U,=rot --$-rxVY,] 
I 

(1.12) 

The meridional astreamlinesa for U,, whose equations are r2F sin2 6 

cos 6= const, are represented in Fig. 1. This secondary motion should 

never be confused with the motion created by the onset of instability. 

It exists always, although it may not be noticeable experimentally for 

small Reynolds numbers, since the ratio of this correction velocity U, 

to U, is of the order of one thousandth. 
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2. Decrements in a stagnant fluid. To investigate the sta- 
bility we shall find first the decrements of normal perturbations for 
R = 0, i.e. in a stagnant fluid, and, after that we shall calculate their 
variation with increasing R. 

It is known [4 ] that in a stagnant fluid normal disturbances are 
attenuated according to the law exp (-A t ), where the X-values are real. 
For the velocity field of normal perturbations u we obtain the equations 

[4 1 
-Au +vp +rotrotu= 0, div u = 0, u 1, s = 0 

1. 2 (2.f) 

The problem has spherical synvnetry, therefore it is convenient to ex- 
pand the perturbation in terms of spherical vector functions 16 1 

u=f(r)Yrl +g(r)rDY +h(r)rxVY, p = q (r) Y (2.2) 

where Y I Y,, (6, 4) = Pi(e) (6) exp (im @ are spherical functions of 
order 1. Note that g = h = 0 for 1 = 0. Because of full spherical sym- 
metry it is clear that the decrements will not depend on the number m 

(the orientation of the disturbances in space is irrelevant). Therefore, 
henceforth, in this section m = 0 and the index 2 is dropped. Substitut- 
ing (2.2) into (2.1) we obtain 

- Af + p’ + +&-J rj - (gr)‘] = 0 (2.3) 

- hg ++ + f rj - (gr)‘]’ = 0 

f’ +++L+)g = 0 

Ah +h”+ +h’ -wh=(j 

(x2.4) 

where all three functions f, g and h vanish for r = 1 and r = a. Evi- 
dently, the functions h are determined independently of f and q; con- 
sequently the perturbations are of two types: for +-disturbances 

u = h (r) r x VY (2.5) 

the particles do not cross their spherical layer, whereas for r-disturb- 
ances 

u = f (r) Yr, + g (r) r VY (2.Q 

the fluid particles have a radial velocity component. 

From (2.4) is seen that: 
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a) The $-perturbation may be defined by Bessel functions of index one 
half, i.e. by trigonometric functions 

where [ 7 1 
h (r) = cl+ (Pr) + Ca$2 (Pr) (2.7) 

‘lhe boundary conditions yield 

ClqJl(P2) +czlpA (P2) = 0, C@I (h1’2u) + C2$2 (I%) = 0 (2.9) 

Hence the equation for X is as follows: 

$1 (e2) $2 (P’u) = $1 (h%) $2 (P2), (2.10) 

For every 1 there exists an indefinitely increasing sequence of de- 

crements, and the smallest of them for each 1 will be henceforth denoted 

by AI. 

It is easily shown that A, 6 A, ,< A, ,< , . . . . Indeed, the smallest 
eigenvalue of the problem (2.4) is equal to the minimum of the expression 

QE [h] = (~[rW+1(1+ 1)/2sl&)/(~r%Vr) (2.11) 

1 1 

if the trial functions vanish at the limits of interval [ 1, a 1. Since 

it is evident that QrC hl < Ql+ 1 [hl (the trial functions for all E are 
the same) then obviously 

min QZ < min QJ+~ (2.12) 

Thus, the smallest decrement of the +-perturbation is obtained for 
I = 1. ‘lhe numerical solution of Equation (2.10) for a = 2 yields 

3r-i = 10.80, Ca / Cl = 2.120, U= - h (r) sin 69, (2.13) 

b) r-perturbations, In order to solve the system (2.3) we shall first 

determine the pressure. From (2.1) we have (dropping the index I) 

Hence 

.$p = p’t + +pl - L-f.!$2p = 0 

p = Ar’+L 
,Wl 

(A, B = const) 

(2.14) 

(2.15) 

Then, eliminating g from (2.3), we obtain 
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with the boundary conditions 

f (1) = f (a) = f' (1) = f' (a) = 0 (3.17) 

'Ihe homogeneous equation, corresponding to (2.16), has the solution 

4 Kh$l (C2r) +DzI/Ia (a1'2r)l (2.18) 

and Equation (2.16) is easily solved by the method of variation of co- 
efficients. Let us introduce the notation 

II (r, h) = (r’+’ I& (h1’2r) dr, 

1 

13 (r, h) = \ r-‘+1~1(~112r) dr 

1 

I2 (r, h) = \ri+'q2 (h1'2r) dr, 14 (r, h) = \rm’f14,(h1’2r) dr (2.19) 
1 1 

Integrals (2.19) are calculated 
'Ihen the exact solution of (2.16), 
lower limit, will be 

directly, using known formulas 18 1. 
satisfying conditions (2.17) at the 

f(r) = -+($lr2 -$211) +$(qlr, - 9213) (2.20) 

Conditions (2.17) for r = a lead to the equations 

A [$l(h1'2a) la (h, a) -92 (IF2a) Il(h, a)1 + 

+ B [ql (3L1’2u) I4 (A, a) -92 (h1'2a) Is (A, a)] = 0 

A IqIl' (Pa) la (h, a)- $2' (A1'2u) I1 (A, a)1 + 

+ B [q~‘(h~‘~u) 14 (A, a) -$2' (A1'2u) 13 (A, a)1 = 0 

where the prime signifies derivatives with respect to r. Equating to 
zero the determinant of this system, we obtain 

I1 (A, a) 14 (h, a) = I2 (A, a) I3 (A, a) (2.21) 

'Ihis condition determines the spectrum of X-decrements. In practice, 
it is impossible to calculate the variation of all the decrements with 
R. lberefore, at first the smallest decrements for various 1 were 
calculated, then those among them were selected which, according to 
physical considerations, must decrease faster with increase of R than 
the remainder. For a = 2 the smallest decrements for 1 = 1, 2, 3, . . . 
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are equal to A, = 38.62, h, = 37.49, A, = 36.9, h, = 37.2, A, = 38.9. 
Morever they sharply increase with increase of 1. 

It is most probable that the laminar flow will be broken down through 
the perturbations, whose lines of flow coincide approximately with 
streamlines of the secondary velocity of U, of the basic flow. This con- 
dition is satisfied by the perturbation in the case f. = 2. Precisely for 
this case the calculations were carried out which verify the assumptions. 
For comparison the calculations were carried out also for 1 = 1. 

Since Formula (2.20) is cumbersome for numerical calculations, it is 
desirable to obtain approximate expressions for fl(r) and fz(r). To do 
this we reduce Equations (2.3) to a variational problem. Eliminating p 
and q, we obtain 

(r4f”)” - 2s (?f’) + s (s - 2) f = A [(s - 2) r2f - (rJj’)‘l (2.22) 

where for simplification s = 2 (I + 1). The smallest eigenvalue A, is 
equal to the minimum of expression 

(2.23j 

hl (s) = i [r4r2 + 2sr2Y2 + s (s - 2) f”] dr /i [r”f’” + (s - 2)r2f21 dr 
i 1 

with the condition (2.17). Hence, using the Ritz method, we obtain for 
La = 2 

fi (I”) = Al (r - 1)s (2 - 7)s (1 - 0.446 r), 

f2 (7) = A2 (r - i)2 (2 - r)2 (1 - 0.426 r) (2.24.) 

The constants A, = 6.39 and A, = 12.41 for a = 2 were determined from 
the condition of normalization 

5 
UVV = 1 ,( V is the vohme of (2.25) 

v fluid) 

3. Decrements in the case of slow flow. For small R’s.normal 
perturbations may be expanded in series (the index 1 is dropped) 

u+u#+u&2+... (3.1) 

Fox the velocity field u1 we obtain the system of equations c4 1 

- A.UI + cipl + rot rot uz = - [(U,V) u + (UT) Ull (3.2) 
div UI = 0, ulJs = 0 

a) Treatment of the $-perturbations. Using (1.3) and (2.131, let us 
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expand the right-hand side of (3.2) in terms of spherical vector fUnG- 
tions 

FJ1-v u -I- (W u,= - 2c4h sin 6 n x v1 = ‘$ [2 (1 - Y2) r1 - rVY2] 

In agreement with (3.3) we are looking for the solution of (3.2) 
the form 

(3.3) 

in 

UL = B (r) Y2 rt + r (r) rVY2, PI = 40 + q2Y2 (3.4) 

Projecting (3.2) on the axes of spherical coordinates, we find 

(3.3) 

4hc% 
qo’, 

4hcz --= 
i- 

__.q2t +~_qY_~,p, ~~~+~_~_~l~ 
3 

The equation of continuity is 

B’ 1 ?!? 6y I r --= & Q 
r (3.6) 

Ihe boundary conditions are 

s (1) = B (4 = r (1) = r (4 = 0 (3.7) 

To determine functions /3 and y let us first find 42. To do this we 
take the divergence of both parts of (3.2) and equate the coefficients 
of the spherical function Y, on the left- and the right-hand sides of 
the equation. After some calculations we obtain 

qz = $2 (r) +G r2 -i-_$J (2 (i-.) cz \ har%r) (3.5) 

Eliminating the function y from (3.5), we obtain the equation for 

~~+~L+(hI_~)~ =I _fZ +Cr_$ 

p (1) = 6 (a) = fi’ (1) = fi’ (a) = 0 
(3.9) 

The solution of the homogeneous equation, in agreement with (3.9), 
is 

where Jp(x) is a Bessel function of the first kind of order p. 
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TABLE 

to 

1.0 
1.1 
1.2 
1.3 
I.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

$-LO1718 
+0.02522 
$0.02258 
+0.01237 
-0.00072 
-0.01146 
-0.01682 
-0.01562 
-0.00872 
0 

0 0 
--u.O1312 +0.00541 
-0.01827 +0.00759 
-0.01661 +0.00631 
-0.00840 +0.00237 
+0.00202 -0.00222 
,0.01075 -0.00606 
'0.01495 
$0.01364 

-0.00765 
-0.00679 

$0.00788 -0.00409 
il 0 

- 

I 
T 

I 

P 

+:.000*03 
+0.000283 
$0.000341 
+0.000279 
-+0.000161 
jo.000034 
-0.000037 
-0.000040 
-0.000033 
0 

By varying coefficients, the solution of (3.9) is easily found so as 

satisfy the conditions p(1) = p'(1) = 0: 

(I (r) = znr-3;2 (J,,,, (iL,1’%) \ i-x5, @yr) Zdr - 
i 

- J--;,z(J,I' '1.) c r-3!2J,/2 (h;/2’.) Zdr + 

C 

+ 4?p --1 
'$+ J&q'2r) Ji;;, (h,l’2) + J_,, 2 (h,1’2r) J5,f2 (hIliz)’ + 

J 

-k Js;2 (h,"'"r) J-3,,? (A,” 2)+J_-5,‘2(h11’2r) J3,2(h11’*) (3.101 

lbe function y is determined from (3.6). The constants C and B in 

(3.10) have to be found from conditions p(a) = P'(a) = 0. For a = 2, 

numerical calculations yield C = - 0.006374 and D = - 0.4531. The values 

of /3 are represented in the table. 

From the equations of the second correction to the perturbation [4 1 
we have 

- hlW - AI% _ 

= - [(U,O)U +(uv) 

Let us determine the correction 

multiply (3.11) by u and integrate 

hC2) = 'll(UO)U~dV + 1 
s s 
V V 

with the condition 

+ vp2 + rot rot u2 

u2 4 @IV u1 + (U,V) &I (3.11) 

to the decrement. For this purpose we 

over the whole volume Y of the liquid 

u(u,V)U,dV + ’ u(U,V)u,dV 
\ 

(3.12) 
G 
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i 
u2dV = 1 

V 

After integrating over the angles of (3.12) we obtain 

hl@) = 2 {-[(F + 3G) h2rdr + \(p + 379 hur2dr + 
1 1 

f \ [p (ar)’ + 3yal hr2dr} 
1” 

Numerical integration for a = 2 yields X,‘2) = - 0.000212. ‘lhe de- 
crement of the $-perturbation, to the R2 approximation, is 

Fig. 2. 

(3.13) 

hl = 1_0.80[1 - (&)z] (3.14) 

b) Treatment of the r-perturbation. 
1. Perturbation case 1 = 1. Its 
meridional streamlines are defined by 

the equation (Fig. 2) 

jlr2 sin2 8 = const (3.15) 

‘lhis perturbation opposes the basic 
flow in some regions of the cavity 
(Fig. 1). 

We shall expand the right-hand side 
of (3.2) in terms of spherical vector 
functions 

(U,v) u + (UT) U, = (flra’ + 2f1a - 2gia) sin 8 cos 8(pr = 

= $ (fl’ar - fla’r) r x vY2 (3.G) 

Let us look for u1 satisfying this function in the form 

UI = m2 (r) r x VY2 

Projecting (3.2) on the axis &, we obtain 

(3.17) 

CD2" + + @2' + (Al - $)@2 = + (fl’ar - fm’) (3.18) 

This equation was integrated numerically. ‘Ihe function m2 for a = 2 
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is represented in the table. After integrating over the angles in (3.12) 
we obtain in this case 

hi(z) = g \ [3@ (11 - g1) a + fl”F’ + 3 (F - C) ‘+ + 

+ 3flgiG’ + f!& (9G 
r 

- F)] r2dr (3.19) 

under the condition of (2.25). Numerical integration for a = 2 yields 
XI(‘) = 0.00658. The d 
to the R2 term is 

ecrement of r-disturbance for i = I approximated 

(3.20) 

Thus, the larger R, the stronger the damping of this perturbation. ‘Ibe 
case when 1 = 3 is analogous to this case and the calculations were 
omitted. 

2. Perturbation case 1 = 2. This case is unique because its stream- 
lines given in the meridional plane by the equation 

fir2 co9 8 sir? 1% = const (3.21) 

are parallel to the streamlines of the secondary flow 
basic flow and are almost indistinguishable from them 

imposed upon the 
(Fig. 1). ‘Ihere- 

fore, we may assume offhand, that this 
down the laminar flow. We shall expand 
terms of spherical vector functions 

perturbation is most apt to break 
the right-hand side of (3.2) in 

(V,c;7)u +(uLp.J,= [ 3cosz‘y (a’fz +2 $)- 

=I 5 (fa’a + fza’ + 4+)r x yw1+; ($ fa’u - 

Let us look for a solution of (3.2) satisfying 

(3.22) 

6c*sa 8’+]r1 x r= 

f 201’ - j-l+) r x c/“Ys 

the above in the form 

al=cD1(r)rxvYl 3-@3(9rx0~3 (3.23) 

Projecting (3.2) upon the $,l-aris and equating the coefficients of 
the same spherical functions we obtain 

These equations were integrated numerically. The values of functions 
@, and a2 for a = 2 are represented in the table. 
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After integrating over the angles in (3.12) we obtain 

‘Ihe numerical integration for a = 2 yields h*(2) = - 0.00367, with the 
condition of (2.25). The decrement X2 for the r-perturbation in the R2 

approximation is 

h2 = 37.49 [I - (&)“l (3.24) 

4. Com~lm~i~m~. The behavior of decrements with increase of R is 
represented in Fig. 3, where curve 1 is the +-perturbation for 1 = 1, 
curve 2 is the r-perturbation for 1 = 2 and curve 3 is the r-perturbation 
for I = 1. The decrement X, for the r-perturbation increases with R; con- 
sequently, the basic flow is stable with respect to this perturbation. 
‘lhe two other curves slope down, however; curve 2 intersects the x-axis 
at R 
flow* 

= 100, likewise curve 1 at R*‘.= 230. This means that the laminar 

U=(anxr)R +(FYzrx +GrvYa)R2 (4.1) 

will be broken down by the r-perturbation in the case 1 = 2 

u = (f2Y2rt -f- gzrVY2) + (au x C7Y1 + cDsr x VYS) R (4.9 

for Reynolds numbers of the order 100. 

Qualitatively, flows (4.1) and (4.2) do not differ from each other. 
In both cases there is a velocity component along &, proportional to R. 

The meridional streamlines are also similar in the case of both motions. 
In this manner, after the breakdown of the basic 
be established which is almost of the same form. 
nonlinear theory [4 1, the new stationary motion 

u + bU2 (12 - H,) 

flow, a new flow will 
As established by the 
will be 

(4.3) 

It will be observed only for R > R_, where it is stable. Although the 
coefficients b were not calculated, iE may be surmised that the second- 
ary flow for R > R* will be directed into the same direction as the 
basic flow. For R < R, it is in the opposite direction and it is not 
stable. 

The observations of these phenomena will be very difficult, because 
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I ’ R 
0 YO YO ii0 

Fig. 3. 

the appearance of the,new motion may be detected only by a break in the 
curve which determines the intensity of the flow as a function of R. 

1 take this opportunity to thank V.S. Sorokin for suggesting the 
problem and for his valuable help. 
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